120

References Data Mining, 10(1), https://doi.org/10.5281/zenodo.3344810 Kaplan, R.M., & Saccuzzo, D.P. (2017). Psychological testing: Principles, applications, and issues. Cengage Learning. Ke, Z., & Ng, V. (2019). Automated essay scoring: A survey of the state of the art. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 6300–6308. https://doi.org/10.24963/ijcai.2019/879 Khosravi, H., Shum, S.B., Chen, G, Conati, C., Tsai,Y-S., Kay, J., Knight, S., Martinez-Maldonado, R., Sadiq, S., Gašević, D. (2022). Explainable artificial intelligence in education. Computers and Education: Artificial Intelligence, https://doi.org/10.1016/j.caeai.2022.100074 Kulik, J.A., & Fletcher, J.D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 42–78 Ma, W., Adescope, O.O, Nesbit, J.C. & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901–918. http://dx.doi.org/10.1037/a0037123 Maslej, N., Fattorini, L., Brynjolfsson E., Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Ngo, H., Niebles, J.C., Parli, V., Shoham, Y., Wald, R., Clark, J. and Perrault, R., (2023). The AI index 2023 annual report. Stanford University: AI Index Steering Committee, Institute for Human-Centered AI. Merrill, S. (2020). In schools, are we measuring what matters? Edutopia. https://www.edutopia.org/article/schools-are-wemeasuring-what-matters Molenaar, I. (2022). Towards hybrid human-AI learning technologies. European Journal of Education, 00, 1–14. https://doi.org/10.1111/ejed.12527 Mostow, J., Aist, G., Burkhead, P., Corbett, A., Cuneo, A., Eitelman, S., Huang, C., Junker, B., Sklar, M.B., & Tobin, B. (2003). Evaluation of an automated reading tutor that listens: Comparison to human tutoring and classroom instruction. Journal of Educational Computing Research, 29(1), 110 | P a g e 3. 36–71.

121 Publizr Home


You need flash player to view this online publication