50

ISBN : 978-81-963532-2-3 (E-Book) The main reason why the DFD technique is so popular is probably because of the fact that DFD is a very simple formalism – it is simple to understand and use. Starting with a set of high-level functions that a system performs, a DFD model hierarchically represents various sub-functions. In fact, any hierarchical model is simple to understand. Human mind is such that it can easily understand any hierarchical model of a system – because in a hierarchical model, starting with a very simple and abstract model of a system, different details of the system are slowly introduced through different hierarchies. The data flow diagramming technique also follows a very simple set of intuitive concepts and rules. DFD is an elegant modeling technique that turns out to be useful not only to represent the results of structured analysis of a software problem, but also for several other applications such as showing the flow of documents or items in an organization. Data Dictionary A data dictionary lists all data items appearing in the DFD model of a system. The data items listed include all data flows and the contents of all data stores appearing on the DFDs in the DFD model of a system. A data dictionary lists the purpose of all data items and the definition of all composite data items in terms of their component data items. For example, a data dictionary entry may represent that the data grossPay consists of the components regularPay and overtimePay. grossPay = regularPay + overtimePay For the smallest units of data items, the data dictionary lists their name and their type. Composite data items can be defined in terms of primitive data items using the following data definition operators: +: denotes composition of two data items, e.g. a+b represents data a and b. [,,]: represents selection, i.e. any one of the data items listed in the brackets can occur. For example, [a,b] represents either a occurs or b occurs. (): the contents inside the bracket represent optional data which may or may not appear. e.g. a+(b) represents either a occurs or a+b occurs. {}: represents iterative data definition, e.g. {name}5 represents five name data. {name}* represents zero or more instances of name data. 45 Software Engineering Keerthana P, Manasa KN, Ganga D Bengal

51 Publizr Home


You need flash player to view this online publication