References 11. References Akgun, S., Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics, 2, 431–440. https://doi.org/10.1007/s43681-02100096-7 Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016). Instruction based on adaptive learning technologies. In Mayer, R.E. & Alexander, P.A., Handbook of research on learning and instruction, 522-560. ISBN: 113883176X Baker, R.S., Esbenshade, L., Vitale, J., & Karumbaiah, S. (2022). Using demographic data as predictor variables: A questionable Black, P. & Wiliam, D. (1998). Inside the black box: Raising standards through classroom https://doi.org/10.35542/osf.io/y4wvj assessment. Phi Delta Kappan, 92(1), 81-90. https://kappanonline.org/inside-the-black- box-raisingstandards-through-classroom-assessment/ Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, https://doi.org/10.1007/s11092-0089068-5 Boden, M.A. (2018). Artificial intelligence: A very short introduction. Oxford. ISBN: 978-0199602919 Bryant, J., Heitz,C., Sanghvi, S., & Wagle, D. (2020, January 14). How artificial intelligence will impact K-12 teachers. McKinsey. https://www.mckinsey.com/industries/education/ourinsights/how-artificial-intelligence-will-impact-k-12teachers Celik, I., Dindar, M., Muukkonen, H. & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66, 616– 630. https://doi.org/10.1007/s11528-022-00715-y Center for Integrative Research in Computing and Learning Sciences (CIRCLS). (2022, Feb.). From Broadening to empowering: Reflecting on the CIRCLS’21 convening. https://circls.org/circls21report 107 | P a g e 21(1), 5-31. choice.
118 Publizr Home